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Relationship Between Telomere Length,  
Aging and Human Disease 

Genomic instability and the loss of cell viability induced by telomere dysfunction contribute to 
disease and tissue/organ decline with age 

Diseases 
• osteoporosis 
• cancer 
• heart disease/ atherosclerosis 
• arthritis/ ulcerative colitis 
• pulmonary fibrosis/ liver cirrhosis 
• diabetes 
• neurodegeneration  
 

Factors 
• perceived stress 
• smoking/  polycyclic aromatic HC 
• obesity 
• environmental metals 
• lack of exercise 
• diet 
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Mechanisms of Telomere Loss and Preservation 
 

Significance 

Understanding mechanisms of telomere loss and preservation could inform 
about new therapeutic strategies that: 
 
1) Protect telomeres in healthy cells to prevent telomere  
     dysfunction-induced pathologies 
 

 - cell senescence and degenerative disease associated with aging 
 - genomic instability and carcinogenesis 

 
 
 
 
2) Deplete telomeres to halt cancer cell proliferation 
 

 - combine with telomerase inhibitors 
 



General background on telomere biology  
DNA  damage and repair   

Summary and Conclusions 

1. Impact of bulky DNA lesions on telomere replication 

2. Repair of bulky DNA lesions at telomeres 

Outline 
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N Dimitrova et al. Nature 2008, 1-5 (2008) 

Conditional knock out of TRF2 in  
mouse embryonic fibroblasts. 
 
p53 proficient – senescence or  

              apoptosis 
 
p53 deficient – chromosome fusions 

Telomere  Uncapping  



Werner Syndrome 

Phenotypes 
      • skin wrinkling 
      • hair loss and graying 
      • cataracts 
       

Caused by loss of the RecQ helicase WRN 

Helicase Exonucl. 
NLS 

Telomere dysfunction contributes to the disease pathology 
     

       

WS cells exhibit  increased: 
1.  Sister telomere loss  
2.  Premature senescence, growth arrest   
3.  Accumulation of aberrant chromosomes (fusions, breaks, translocations) 
      
All suppressed by expressing  either WRN or telomerase 

• diabetes (type II) 
• osteoporosis 
• atherosclerosis, heart disease 
• cancer; particularly sarcomas 

      

Stochastic telomere loss occurs in normal senescent cells as well 

 
The shortest telomere, not the average telomere length, is the 

critical determinant of cell viability and genome stability  
(Hemann Cell 2001) 

 



Telomeres Are Hypersensitive to Replication Stress 

aphidicolin (fragile only) 
oncogenic signaling 
G-quadruplex ligands 
Loss of: 
  helicases WRN, BLM, RTEL1 
  shelterin TRF1, POT1, others 
  Ogg1 and Nth1 glycosylase   

Fragile Telomere Telomere loss 
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prevents stall 

G4 block replication  
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aphidicolin (fragile only) 
oncogenic signaling 
G-quadruplex ligands 
Loss of: 
  helicases WRN, BLM, RTEL1 
  shelterin TRF1, POT1 
  Ogg1 and Nth1 glycosylase   
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Can DNA Damage Cause Telomere Loss or Fragility? 



Hoeijmakers, 
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DNA Repair Mechanisms DNA Damage Tolerance 

Fork remodeling 
Translesion DNA synthesis 

CPD, 6-4PP 
bulky adducts 

oxidative base damage 

How Do Telomeres Manage DNA Damage? 

    Yes 
efficiency? 

Suppressed Telomere ?    ? 
    

1. Kruk et al. 1995, PNAS 
2. Rochette & Brash 
2010, PLoS Genetics 



Xeroderma Pigmentosum 

•  Caused by mutations in genes that code for NER proteins (XP-A to XP-G); 
      or polymerase η (XPV) 
•  Photosensitivity 
•  Pigmentation abnormality and atrophic skin 
•  >1000x increase in skin cancer and 10x increase in internal tumors 
•  neurological degeneration in 30% of the cases 
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•  Shortened telomeres were observed in sunlight or UVB exposed skin tissue from 
humans and mice  

     (Ikeda et al. Human Pathology. 2014;  Stout & Blasco Cancer Research. 2013)  



X =   UV photoproducts (acute physical exposure) 
        Cr-DNA adducts    (chronic chemical exposure)        
         

Fork collapse 
 into break 

X 

Nucleotide excision repair   
break repair 

Translesion DNA synthesis (Pol η) 
 

WRN helicase 

Do DNA lesions cause telomere aberrations ? 
Are they repaired at telomeres? 
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Salnikow & Zhitkovich; Chem. Res. Toxicol.  2008 

UV Light and Cr(VI) Exposures Induce Bulky Lesions 

•  removed by NER 
•  block replicative polymerases 
•  cause replication dependent breaks 
•  bypassed by polymerase η 
      - in yeast for Cr(VI) 

DNA Repair & Mutagenesis, 
2nd Ed, ASM Press 
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Polη Foci Formation and Localization to Telomeres 
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Summary and Conclusions 

� Pol η deficient cells show significantly higher levels of UVC- and Cr(VI)-induced 
telomere defects. 

 Translesion DNA synthesis required for replication of damaged telomeres 
 

� The induction of bulky DNA lesions generates telomere defects consistent with 
failures in telomere replication – loss and fragility 

 UVC-induced DNA photoproducts 
 Cr(VI)-induced DNA adducts 

� Uncovered new evidence that Pol η protects against Cr(VI)-induced cytotoxicity 
and replication stress.   

Telomeres may be highly dependent on damage bypass mechanisms due to 
deficiencies in break repair and possible lack of damage removal. 



X =   UV photoproducts 
        Cr-DNA adducts             
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Dhvani Parikh 

DNA lesions can cause telomere aberrations 
Are they repaired at telomeres? 

 



Hoeijmakers, 
2001 Nature 

DNA Repair Mechanisms DNA Damage Tolerance 
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How Do Telomeres Manage DNA Damage? 
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efficiency? 

Suppressed Telomere 
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Opresko, NAR. 2014 
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Kruk et al. PNAS. 1995 
Rochette & Brash, 
PLoS Genetics. 2010 
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+ 
biotin 
oligo 

+ strep beads 

cut genomic DNA (4 enzymes) 
anneal biotin oligo to telomere tail 

capture telomeres with 
streptavindin beads 

anti-CPD 
anti-6-4 PP 32P -telo 

genomic 

telomeric 

standard 
post UV (h)   0    24   48      0     24   48     

= pyridimine dimer 

Telomere Capture Assay 

Dhvani Parikh 

11x 100 mm dishes 

20 x 106 cells 

100 µg genomic DNA 

Telomere < 0.025% of the genome ! 

Wright et al. Genes & Dev. 1997 

25 ng telomeric DNA 



10 mins 

Mock 

Capture oligo 

Scrambled 

Telomere 
(CCCTAA)3 

•  Eluent yields: Mock = 0 ng,  Scrambled = 2.6 ng, 
and Telomere = 10 ng 
  
•  Estimated telomere recovery:  
  bound/ bound + unbound = 33% ± 0.6%   
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• Following UVC exposure cells do not double even after 72 hrs 
•  We do not expect photoproduct dilution by cell division 
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CPD Repair in Genomic and Telomeric DNA 
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•  CPD signal ~2.5-fold lower in purified 
telomeres 

•  CPD removal is 1.5 fold faster in telomeres 
compared to the bulk genome 
 



6-4 PP Repair in Genomic and Telomeric DNA 
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Telomerase is Not Required for Telomere Repair 

anti 6-4 PP 

Time post     
UVC (hrs) 

0   
1.5 

3 

12 

DNA ng      7.5  15 

32P-(CCCTAA)4 
0   
1.5 

3 

12 

32P-Alu 
0   
1.5 

3 
12 

U2OS cells – telomerase negative 

0 3 6 9 12 
0 

20 

40 

60 

80 

100 

  Genomic 
  Telomeric 

%
 6

-4
 P

P 
 re

m
ai

ni
ng

 

Time after 10 J/m2      
        UVC (hrs) 

•  are photoproducts removed by NER? 
 



NER is Required for 6-4 PP Removal at Telomeres 
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Role for Nucleotide Excision Repair 
At Telomeres After Damage 

0 

2 

4 

6 

8 

10 

10 J/m2 

Normal fibroblasts 
(XPA complemented) 

XP-A fibroblasts 
(XPA-/-) 

� UVC irradiation induces a near 2-fold increase in telomere loss and doublets 
� Similar results in NER proficient and deficient cells?   

XP20S-derived cells 
SV40 transformed 

* 
* 

 A
v.

 te
lo

m
er

e 
de

fe
ct

/ m
et

ap
ha

se
 

0 

2 

4 

6 

8 

10 

* 
* 

* 



α-GAPDH 

α-XPA 

XPA Complemented Cells Repair Slowly 
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Summary and Future Directions 

5. UVC generates telomere defects consistent with failures in telomere replication  
-  Aberrations are increased in translesion synthesis deficient cells  
-  NER deficient cells? 
 

1.  UVC induces CPD and 6-4 PP formation at telomeres 
- frequency is about 2-fold less than the bulk genome 

2. CPDs are repaired 1.5-fold faster at telomeres compared to the bulk genome. 
Transcription coupled repair? 

3. 6-4 PPs persist at telomeres and the bulk genome in XPA deficient cells 
- Indicates that NER is active at telomeres 

4. 6-4 PPs removal rates at telomeres are similar to the bulk genome in telomerase 
positive  (BJ-hTERT) and telomerase negative (U2OS) cells 
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